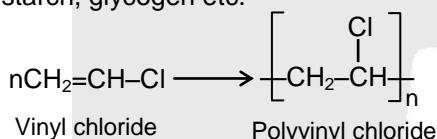


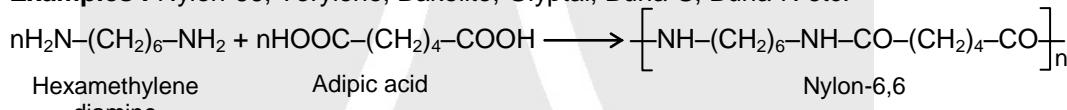
Polymers

Polymers are very high molecular mass substances where each molecule is derived from very large number of simple molecules joined together in a regular way. Polymers are formed by repeated combination of simplest units called monomers and the process of formation of polymers from simple molecule (monomers) is called polymerization.



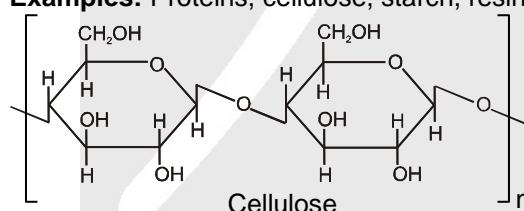
Polymers can be classified in following ways :

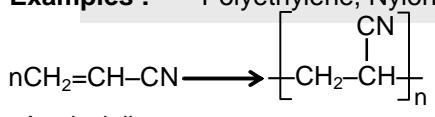
(A) Classification based on type of monomer units :


(i) **Homopolymers** : Polymers in which repeating structural units are derived from only one type of monomer units are called homopolymers.

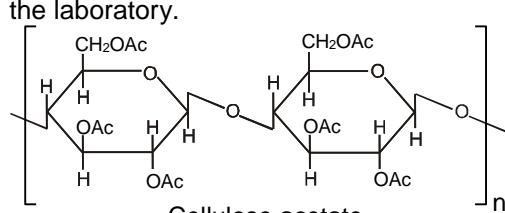
Examples: Polyethylene, polyvinyl chloride (PVC), polyisoprene, neoprene (polychloroprene) polyacrylonitrile (PAN), nylon-6, polybutadiene, teflon (polytetrafluoroethylene), cellulose, starch, glycogen etc.

(ii) **Copolymers** : Polymers in which repeating structural units are derived from two or more types of monomer units are called copolymers.


Examples : Nylon-66, Terylene, Bakelite, Glyptal, Buna-S, Buna-N etc.


Nylon - Polymers which have amide linkage

(B) Classification based on source of origin :


(i) Natural polymers : These polymers are found in plants and animals. Examples: Proteins, cellulose, starch, resins and rubber.

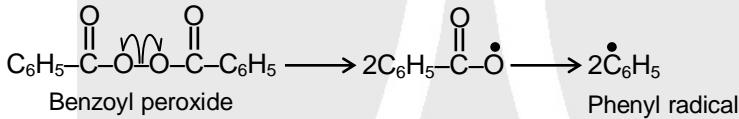
(ii) Synthetic polymers : These polymers are prepared in the laboratory. **Examples :** Polyethylene, Nylon-6.6, Dacron & Polyacrylonitrile (PAN).

(iii) Semi-synthetic polymers : These polymers are found in plants and animals then modified in the laboratory.

Cellulose acetate

(ii) **Fibres** : Fibres are the thread forming solids which possess high tensile strength and high modulus. Polymers in which the intermolecular forces of attraction are the strongest are called fibers. These forces are either due to H-bonding or dipole-dipole interactions. In case of nylon (polyamides), the intermolecular forces are due to H-bonding while in polyesters (terylene, dacron etc.) and polyacrylonitrile (orlon, acrylin etc.) Dipole-dipole interactions between the polar carbonyl (C = O) groups and, between carbonyl and cyano (– C ≡ N) groups respectively.
Examples: Polyamides (Nylon 6,6), polyesters (terylene), etc

(iii) **Thermoplastics** : These are the linear or slightly branched long chain molecules capable of repeatedly softening on heating and hardening on cooling. These polymers possess intermolecular forces of attraction intermediate between elastomers and fibres.
Examples : Polythene, polystyrene, polyvinyls, etc.

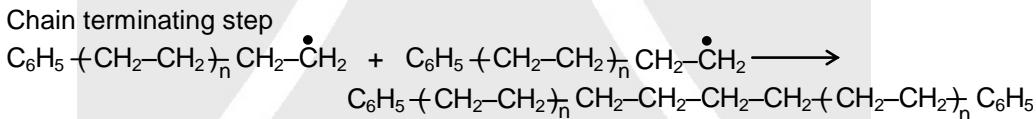

(iv) **Thermosetting polymers** : These polymers are cross linked or heavily branched molecules, which on heating undergo extensive cross linking in moulds and again become infusible. These cannot be reused.
Examples : Bakelite, urea-formaldehyde resins, etc.

(F) Classification based on Mechanism of polymerisation:

(i) **Chain growth polymerisation** : Additional polymers are chain growth polymers. Chain growth polymerisation takes place by-

(a) **Free radical mechanism** : A variety of alkenes, dienes and their derivatives are polymerised in the presence of a free radical generating initiator (catalyst) like benzoyl peroxide, acetyl peroxide, tert-butyl peroxide, etc.

Chain initiation steps


$$\bullet \text{C}_6\text{H}_5 + \text{CH}_2=\text{CH}_2 \longrightarrow$$

Chain propagating step

$$\text{C}_6\text{H}_5\text{---CH}_2\text{---CH}_2\text{---CH}_2\text{---}$$

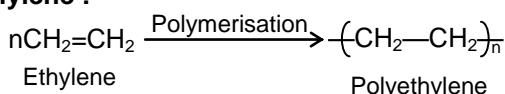
Examples : $\text{CH}_2=\text{CH}_2$, $\text{CH}_2=\text{CH}-\text{CH}_3$, $\text{CH}_2=\text{CH}-\text{CH}=\text{CH}_2$, etc.

(b) Cationic mechanism : Alkenes having electron releasing group are polymerised by cationic mechanism.

Examples : $\text{CH}_2=\text{CH}-\text{O}-\text{CH}_3$

(c) Anionic mechanism : Alkenes having electron withdrawing group are polymerised by cationic mechanism.

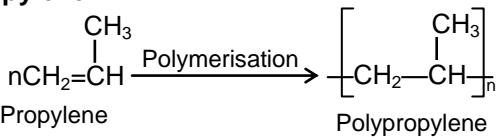
Examples : $\text{CH}_2=\text{CH}-\text{CN}$


(ii) **Step growth polymerisation** : Condensation polymers are step growth polymer. This polymerisation progresses through step by step. **Examples** : Nylon, bakelite, dacron, etc.

Examples of polymers :

(1)

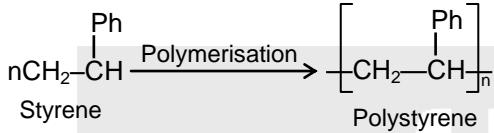
Example 3


Polyethylene :

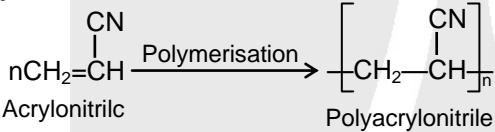
Low density polythene is used in the insulation of electricity carrying wires and manufacture of squeeze bottles, toys and flexible pipes.

High density polythene is used for manufacturing buckets, dustbins, bottles, pipes, etc.

(2) Polypropylene :


Polypropylene is used for manufacture of ropes, toys, pipes, fibres, etc.

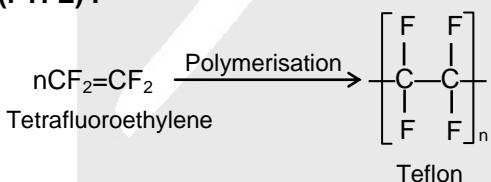
(3) Polyvinyl Chloride (PVC) :


PVC is used in the manufacturing of rain coats, hand bags, vinyl flooring, water pipes, imitation leather, floor covering and gramophone records.

(4) Polystyrene :

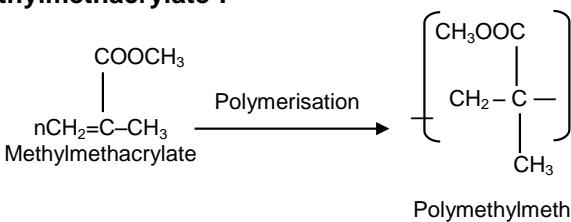
Polystyrene is used as insulator, wrapping material, manufacture of toys, radio and television cabinets.

(5) Polyacrylonitrile :

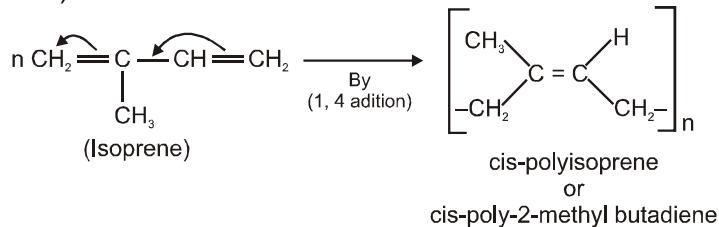


Polyacrylonitrile is used as a substitute for wool in making commercial fibres as orlon or acrilan.

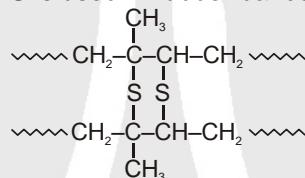
(6) Polyvinylacetate :



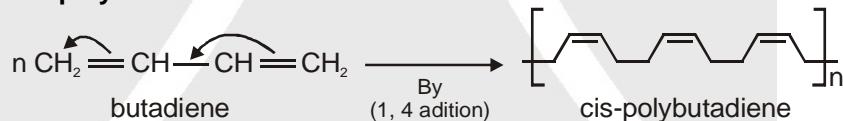
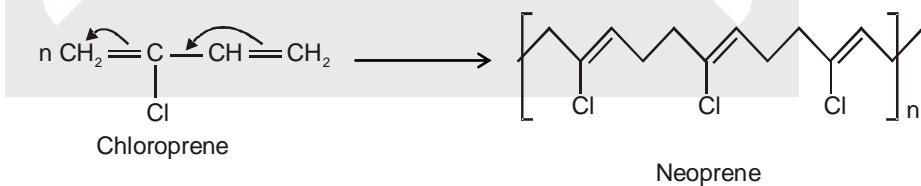
(7) Teflon (PTFE) :


Teflon is used in making oil seals, valves and gaskets and it is also used for non-stick surface coated utensils. Because of its low chemical reactivity, excellent toughness, electrical and heat resistance, teflon is used as insulation for electrical items.

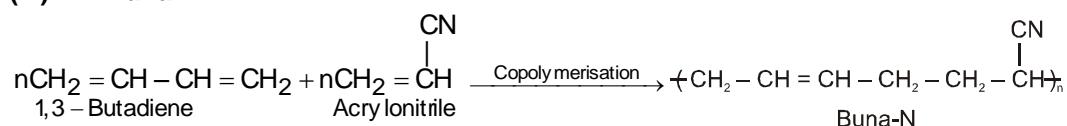
(8) Polymethylmethacrylate :


(9) Rubbers :

(a) **Natural Rubber** : Rubber is a natural polymer and possesses elastic properties. It is also termed as elastomer and has a variety of uses. It is manufactured from rubber latex which is a colloidal dispersion of rubber in water. This latex is obtained from the bark of rubber tree and is found in India, Srilanka, Indonesia, Malaysia and South America. Natural rubber is a linear polymer of isoprene (2-methyl-1,3-butadiene) and is also called as cis-1, 4-polyisoprene. Natural Rubber is isotactic polymer (polymers which have same configuration at all stereocentre).

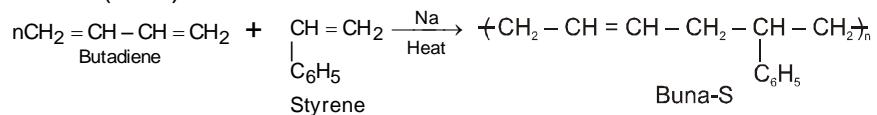



* **Gutta parcha**, has isoprene unit in trans-form (dentist used it in the filling of teeth).


Vulcanization : Raw rubber does not possess the characteristic of the rubber with which we are familiar. In order to give it strength & elasticity it is vulcanised. **In the vulcanization process, raw rubber is mixed with small amount of sulphur and heated**. Use of external sulphur increases the cross-linking and toughness. 1-3 % S is used in rubber bands and 5% S is used in tyre rubber.

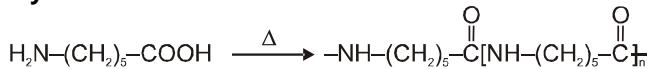
(b) **Synthetic Rubber** : Synthetic rubber is rubber like polymers, which is capable of getting stretched to twice its length. However, it returns to its original shape and size as soon as the external stretching force is released. Thus, synthetic rubbers are either homopolymers of 1,3-butadiene derivatives or copolymers of 1, 3-butadiene or its derivatives with another unsaturated monomers.

(i) **Cis-polybutadiene** :(ii) **Neoprene** :


Neoprene has superior resistance to vegetable and mineral oils. It is used for manufacturing conveyor belts, gaskets and hoses.

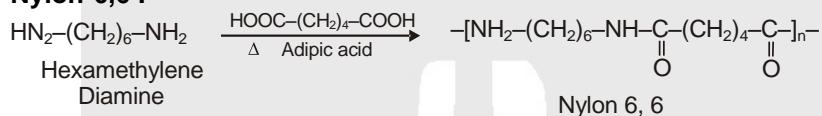
(iii) **Buna-N** :

Buna-N is resistant to the action of petrol, lubricating oil and organic solvents. It is used in making oil seals, tank lining etc.


(iv) **Buna-S** : It is obtained by the polymerization of butadiene and styrene in the ratio of 3 : 1 in the presence of sodium. It is also known as styrene butadiene rubber (SBR).

Buna-S is used for the manufacture of autotires, floortiles, footwear components, cable insulation, etc.

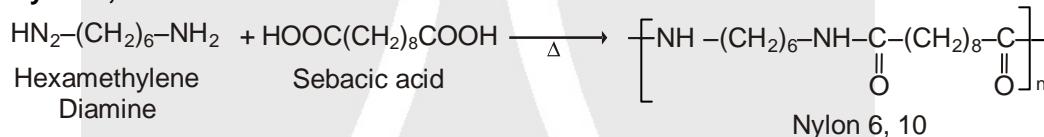
(10) Polyamides :


(a) **Nylon-6 :**

6-Aminohexanoic acid Nylon-6

Nylon-6 is used for the manufacture of tyre cords, fabrics and ropes.

(b) **Nylon-6,6 :**

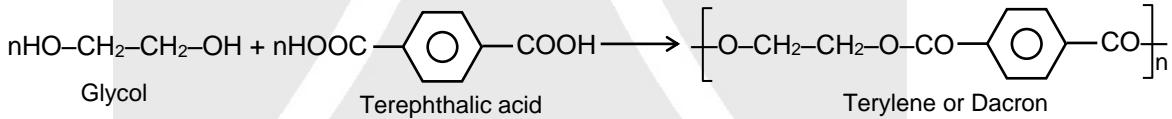


Hexamethylene Diamine

Nylon 6, 6

Nylon-6, 6 is used in making sheets, bristles for brushes and in textile industry.

(c) **Nylon-6,10 :**

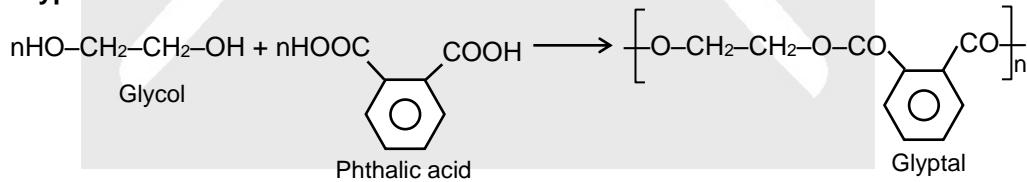

Hexamethylene Diamine

Sebacic acid

Nylon 6, 10

(11) Polyesters :

(a) **Dacron :**

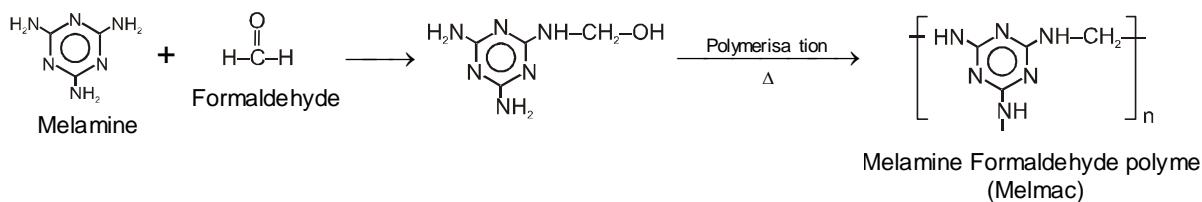

Glycol

Terephthalic acid

Terylene or Dacron

Dacron fibre (terylene) is crease resistant and is used in blending with cotton and wool fibres and also as glass reinforcing materials in safety helmets, etc.

(b) **Glyptal :**

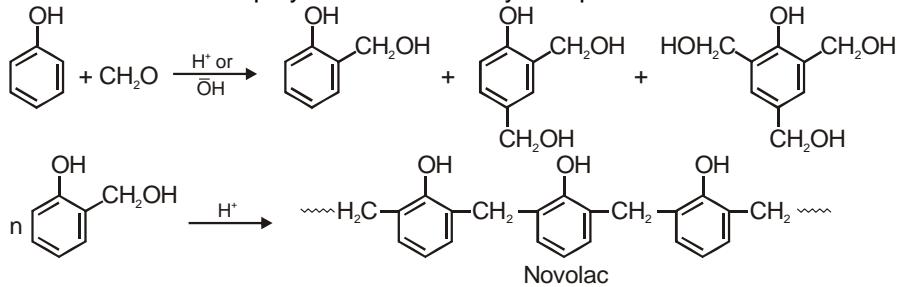

Glycol

Phthalic acid

Glyptal

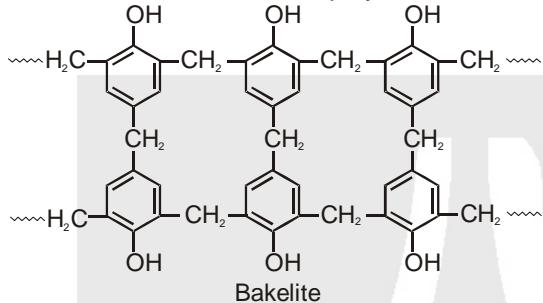
Glyptal is used as manufacture of paints and lacquers.

(12) Melamine formaldehyde Resin :

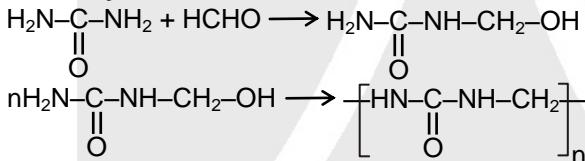

Melamine Formaldehyde polymer (Melmac)

Melamine formaldehyde resin is used in the manufacture of unbreakable crockery.

(13) **Phenol formaldehyde polymers :**


Phenol formaldehyde polymers are the oldest synthetic polymers. These are obtained by the condensation reaction of phenol with formaldehyde in the presence of either an acid or a base catalyst.

(a) **Novalac** : It is linear polymer of formaldehyde & phenol.

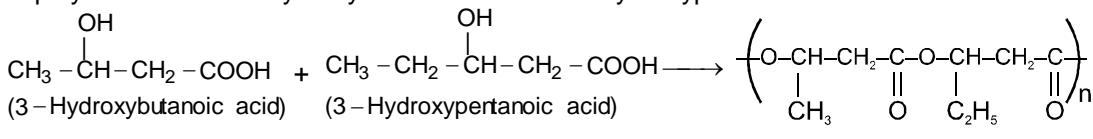


Novolac is used in paints.

(b) **Bakelite** : It is cross linked polymer of formaldehyde & phenol.

Bakelite is used for making combs, phonograph records, electrical switches, handles of various utensils & computer discs.

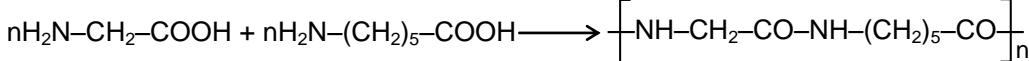
(14) **Urea formaldehyde Resin :**


Urea formaldehyde Resin is used for making unbreakable cups and laminated sheets.

(15) **Biodegradable Polymers :**

A large number of polymers are quite resistant to the environmental degradation processes and are thus responsible for the accumulation of polymeric solid waste materials. These solid wastes cause acute environmental problems and remain undegraded for quite a long time. In view of the general awareness and concern for the problems created by the polymeric solid wastes, certain new biodegradable synthetic polymers have been designed and developed. These polymers contain functional groups similar to the functional groups present in biopolymers.

Aliphatic polyesters are one of the important classes of biodegradable polymers. Some examples are given below :


(a) **Poly β -hydroxybutyrate-co- β -hydroxy valerate (PHBV)** : It is obtained by the copolymerisation of 3-hydroxybutanoic acid and 3-hydroxypentanoic acid.

PHBV

PHBV is used in speciality packaging, orthopaedic devices and in controlled release of drugs. PHBV undergoes bacterial degradation in the environment.

(b) **Nylon-2-nylon-6** : It is an alternating polyamide copolymer of glycine ($\text{H}_2\text{N}-\text{CH}_2-\text{COOH}$) and amino caproic acid ($\text{H}_2\text{N}(\text{CH}_2)_5\text{COOH}$) and it is also biodegradable polymer.

Some common addition polymers/chain growth polymer

S. No.	Name(s)	Formula	Monomer	Uses
1.	Polyethylene (low density (LDPE))	$-(\text{CH}_2-\text{CH}_2)_n-$	$\text{CH}_2=\text{CH}_2$ (ethylene)	Film wrap, Plastic Bags
2.	Polyethylene (high density (HDPE))	$-(\text{CH}_2-\text{CH}_2)_n-$	$\text{CH}_2=\text{CH}_2$ (ethylene)	Electrical insulation bottles, toys
3.	Polypropylene (PP) different grades	$\left[\begin{array}{c} \text{CH}_3 \\ \\ \text{CH}-\text{CH}_2 \end{array} \right]_n$	$\text{CH}_2=\text{CHCH}_3$ (propylene)	Manufacture of ropes, toys, pipes, fibres etc.
4.	Poly vinyl chloride (PVC)	$\left[\begin{array}{c} \text{Cl} \\ \\ \text{CH}-\text{CH}_2 \end{array} \right]_n$	$\text{CH}_2=\text{CHCl}$ (vinyl chloride)	Manufacture of rain coats, hand bags, vinyl flooring, water Pipes etc.
5.	Poly vinylidene chloride (Saran A)	$\left[\begin{array}{c} \text{Cl} \\ \\ \text{C}-\text{CH}_2 \\ \\ \text{Cl} \end{array} \right]_n$	$\text{CH}_2=\text{CCl}_2$ (vinylidene chloride)	Seat covers, films & fibers
6.	Polystyrene (Styron)	$\left[\begin{array}{c} \text{CH}_2-\text{CH} \\ \\ \text{C}_6\text{H}_5 \end{array} \right]_n$	$\text{CH}_2=\text{CHC}_6\text{H}_5$ (styrene)	As insulator, wrapping material, manufactures of toys, radio and Television cabinets
7.	Polyacrylonitrile (PAN, Orlon, Acrilan)	$\left[\begin{array}{c} \text{CN} \\ \\ \text{CH}-\text{CH}_2 \end{array} \right]_n$	$\text{CH}_2=\text{CHCN}$ (acrylonitrile)	Rugs, Blankets clothing
8.	Polytetrafluoroethylene (PTFE, Teflon)	$-(\text{CF}_2-\text{CF}_2)_n-$	$\text{CF}_2=\text{CF}_2$ (tetrafluoroethylene)	Non-stick surfaces electrical insulation
9.	Poly methyl methacrylate (PMMA, Lucite, Plexiglas, perspex)	$-\text{[CH}_2\text{C}(\text{CH}_3)\text{CO}_2\text{CH}_3\text{]}_n-$	$\text{CH}_2=\text{C}(\text{CH}_3)\text{CO}_2\text{CH}_3$ (methylmethacrylate)	Lighting covers, signs skylights
10.	Poly vinyl acetate (PVAc)	$-(\text{CH}_2-\text{CHOCOCH}_3)_n-$	$\text{CH}_2=\text{CHCOCH}_3$ (vinyl acetate)	Latex paints, Adhesives
11.	Natural Rubber	$-\text{[CH}_2-\text{CH}=\text{C}(\text{CH}_3)-\text{CH}_2\text{]}_n-$ (cis)	$\text{CH}_2=\text{CH}-\text{C}(\text{CH}_3)=\text{CH}_2$ (isoprene)	Requires vulcanization for practical use
12.	Neoprene	$-\text{[CH}_2-\text{CH}=\text{CCl}-\text{CH}_2\text{]}_n-$	$\text{CH}_2=\text{CH}-\text{CCl}=\text{CH}_2$ (chloroprene)	Synthetic rubber, oil resistant seal, gaskets, hoses & conveyor belts
13.	SBR styrene butadiene rubber (Buna-S)	$-\text{[CH}_2-\text{CH}(\text{Ph})-\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2\text{]}_n-$	$\text{H}_2\text{C}=\text{CHC}_6\text{H}_5$ and $\text{H}_2\text{C}=\text{CH}-\text{CH}=\text{CH}_2$	Tyres, floortiles, foot wear & cable insulation
14.	Nitrile Rubber (Buna-N)	$-\text{[CH}_2-\text{CH}(\text{CN})-\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2\text{]}_n-$	$\text{H}_2\text{C}=\text{CHCN}$ and $\text{H}_2\text{C}=\text{CH}-\text{CH}=\text{CH}_2$	Making oil seals, tank lining and hoses

Some condensation polymers/step growth polymers

S. No.	Name(s)	Formula	Monomer	Uses
1.	Polyester/Dacron/ Terylene/Mylar		HO ₂ C-C ₆ H ₄ -CO ₂ H (Terephthalic acid) HO-CH ₂ CH ₂ -OH Ethylene glycol	Fabric, Tyre cord
2.	Glyptal or Alkyds resin		HO ₂ C-C ₆ H ₄ -CO ₂ H (Phthalic acid) HO-CH ₂ CH ₂ -OH	Paints and Lacquers
3.	Polyamide (Nylon 6,6)	$\sim [CO(CH_2)_4CO-NH(CH_2)_6NH]_n \sim$	HO ₂ C-(CH ₂) ₄ -CO ₂ H H ₂ N-(CH ₂) ₆ -NH ₂	Parachutes & Clothing
4.	Nylon 6,10	$\sim [C(CH_2)_6-C(=O)-NH-(CH_2)_6-NH]_n$	HOOC-(CH ₂) ₈ -COOH H ₂ N-(CH ₂) ₆ -NH ₂	
5.	Polyamide Nylon 6, Perlon-L	$\sim [CO(CH_2)_5NH]_n \sim$		Rope & Tyre cord
6.	Bakelite		PhOH + HCHO in (excess)	Electrical Switch, combs, Handle of Utensils, computer discs and Bowling Balls
7.	Urea-formaldehyde resin	$(-NH-CO-NH-CH_2-)_n$	H ₂ N-CO-NH ₂ (Urea) HCHO (Formaldehyde)	Making unbreakable cups and laminated sheets.
8.	Melamine formaldehyde resin		+ HCHO (melamine) (formaldehyde)	Unbreakable crockery
9.	Polyamide Kevlar		Para HO ₂ C-C ₆ H ₄ -CO ₂ H Para H ₂ N-C ₆ H ₄ -NH ₂	Tyre
10.	Polyamide Nomex		Meta HO ₂ C-C ₆ H ₄ -CO ₂ H Meta H ₂ N-C ₆ H ₄ -NH ₂	
11.	Polyurethane Spandex		HOCH ₂ CH ₂ OH 	Foams, Shoes, Automobile seats and components
12.	Polycarbonate Lexan		(HO-C ₆ H ₄ -)C(CH ₃) ₂ (Bisphenol A) X ₂ C=O (X = OCH ₃ or Cl)	Bike helmet, goggles, bullet proof glass